Burying Libor

Sven Klingler

BI Oslo

Karlsruhe, April 2023 Based on joint work with Olav Syrstad

July 2017: "The Future of Libor" (Bailey, 2017)

Libor publication not guaranteed after 2021

Central Questions:

- 1. What rates replace Libor?
- 2. How does the Libor transition affect derivatives markets?
- 3. Does the Libor transition affect borrowing costs?

July 2017: "The Future of Libor" (Bailey, 2017)

Libor publication not guaranteed after 2021

Central Questions:

- 1. What rates replace Libor?
 - Klingler and Syrstad (2021): Life after Libor
- 2. How does the Libor transition affect derivatives markets?
- 3. Does the Libor transition affect borrowing costs?

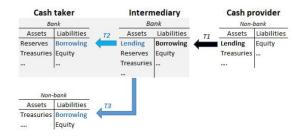
The Alternative Reference Rates

- Replace Libor with transaction-based overnight rates
- Each currency-region chose different rates
- Three possible types of transactions:
 - T1 Non-bank to bank lending
 - T2 Bank to bank lending (traditional Libor rate)
 - 73 Bank to non-bank lending

United States: Secured Overnight Financing Rate (SOFR)

- Collateralized overnight rate (with U.S. Treasuries as collateral)
- ▶ Includes *T*1, *T*2, and *T*3

United Kingdom: Sterling Overnight Index Average (SONIA)

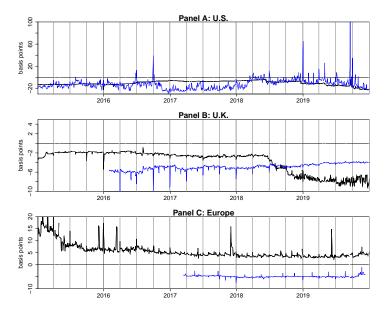

Uncollateralized overnight rate (only T1 and T2)

Euro area: Euro Short Term Rate (ESTR)

Uncollateralized overnight rates (only T1 and T2)

See Schrimpf and Sushko (2019) for details on other currencies

The Alternative Reference Rates



Hypotheses

- 1. Regulatory constraints \uparrow
 - Ample reserves \Rightarrow $T1 \downarrow$ and $T2 \rightarrow$ (banks reluctant to take cash)
 - ▶ Banks need cash \Rightarrow T3 \uparrow and T2 \uparrow (banks reluctant to lend)
- 2. Government debt $\uparrow \Rightarrow T1 \uparrow$ (lenders place cash in Treasuries)
 - If rate collateralized: $T1\uparrow$, $T2\uparrow$, and $T3\uparrow$ (more borrowing demand)
- 3. If reserves are not ample
 - Reserves $\downarrow \Rightarrow T1 \uparrow$, $T2 \uparrow$, and $T3 \uparrow$ (more borrowing demand)

Sven Klingler

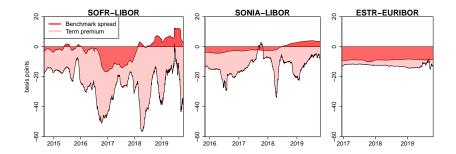
The Alternative Reference Rates vs. ON Libor

Sven Klingler

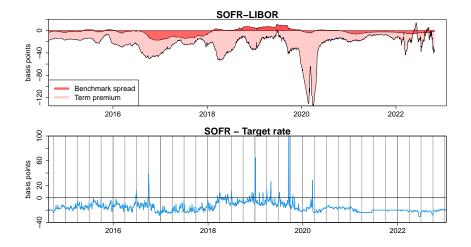
Differences Between Libor and Alternative Rates

3m Libor is term rate known at time t = 0

3-month term rate based on overnight rates:

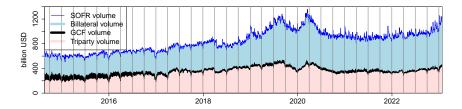

$$r(0,t) = \left[\prod_{i=1}^{d_b} \left(1 + \frac{SOFR_i \times n_i}{360} \right) - 1 \right] \frac{360}{90}$$

- SOFR_i is rate at date i
- n_i number of calendar days SOFR_i is applied for
- d_b number of business days over the past 90 days


Note: r(0, t) is only known at time t (compounded in arrears)

Differences Between Libor and Alternative Rates

- Benchmark spread: Alternative rate minus ON Libor (compounded)
- Term spread: 3m Libor minus compounded ON Libor (in arrears)



SOFR Over Time

What Makes SOFR Tick?

- Bilateral repo transactions (similar to T3)
- General collateral financing repos (similar to T2)
- Tri-party repos (similar to T1)
 - MMFs have access to reverse repo facility (RRP)

Fluctuations in SOFR volume mainly due to T3 transactions

What Makes SOFR Tick?

	Full Sample		2014 to 2019		2020 to 2023	
	(1)	(2)	(3)	(4)	(5)	(6)
Intercept	-0.00^{**}	-0.00^{**}	-0.00^{***}	-0.00^{***}	-0.00	-0.00
$\Delta \log(Debt)$	(-2.36) 4.12*** (5.80)	(-2.52) 4.42^{***} (6.07)	(-2.81) 9.46*** (10.21)	(-2.93) 9.92^{***} (10.79)	(-0.99) 1.73^{**} (2.51)	(-1.13) 1.91*** (2.61)
$\Delta \log(Transact. Volume)$	0.08*** (3.49)	(0.01)	0.09** (2.48)	(20113)	0.06** (2.10)	(2102)
$\Delta \log \left(\frac{TPV}{SOFRV} \right)$		-0.13^{***}		-0.17^{***}		-0.06
(30/10/)		(-2.81)		(-2.85)		(-0.96)
Adj. R ²	0.06	0.05	0.13	0.12	0.02	0.02
Num. obs.	1, 778	1,778	1,136	1,136	642	642

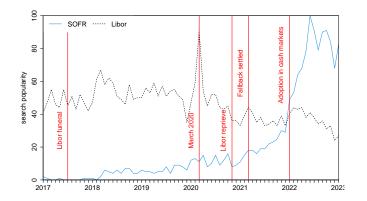
Table: Daily Changes in SOFR (excluding QEnds).

Debt: US Treasury debt outstanding

 Transact. Volume: All SOFR transactions (variance driven by T3)
TPV SOFRV : Fraction of T1 in SOFR

The "Libor Funeral"

July 2017: "The Future of Libor" (Bailey, 2017)


Libor publication not guaranteed after 2021

Central Questions:

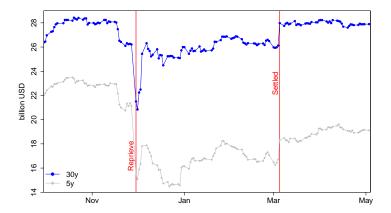
- 1. What rates replace Libor?
 - Klingler and Syrstad (2021): Life after Libor
- 2. How does the Libor transition affect derivatives markets?
 - Work in progress: The Last Days of Libor
- 3. Does the Libor transition affect borrowing costs?

Who Cares About SOFR?

Google trends for Libor and SOFR (restricted US financial)

Libor reprieve: US Libor continued until July 2023

Fallback settled: Replace Libor with term SOFR plus spread


Spread based on historic median

Sven Klingler

Speculation on the End of Libor

Libor tenor basis spreads:

- Exchange 1-month and 6-month Libor payments
- Speculate on Libor fallback

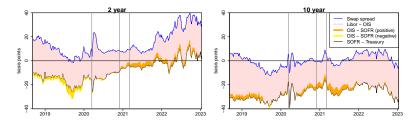
Speculation on the End of Libor

	Tenor basis			Euro-dollar futures		
	1m/6m (1)	1m/3m (2)	3m/6m (3)	All (4)	TTM < 48m (5)	
$1(Reprieve) \times 1(Affected)$	-4.60***	-2.70***	-1.90***	-2.20***	-3.29***	
1(Settled) imes 1(Affected)	(-22.92) 1.49***	(-11.77) 1.58^{***}	(-17.55) -0.09	(-7.74) 0.96^{***}	(-11.00) 0.68^{**}	
-() // -()	(13.01)	(8.70)	(-0.86)	(3.82)	(2.64)	
1(Reprieve)	-0.37***	-0.16^{***}	-0.21	-0.50***	-0.50^{***}	
	(-9.73)	(-6.08)	(-1.89)	(-3.28)	(-3.25)	
1(Settled)	0.02	-0.77***	0.80***	0.13	0.13	
	(0.16)	(-4.73)	(6.66)	(0.85)	(0.84)	
YQ FE	Yes	Yes	Yes	Yes	Yes	
Type FE	Yes	Yes	Yes	Yes	Yes	
Adj. R ²	0.48	0.32	0.27	0.01	0.06	
Num. obs.	1,077	1,078	1,090	2,716	2,114	

Tenor swaps:

- Affected: (2y,) 3y, 5y, 10y, 30y
- ▶ Not affected: 6m, 12m (and 2y)

Affected Instruments

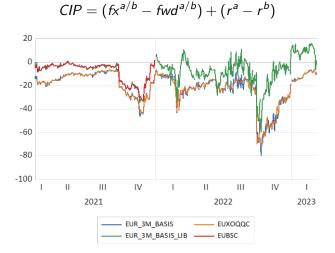

Instruments	Impact			
Derivatives markets				
Interest rate swaps	Swap spreads			
Currency derivatives & swaps	CIP deviations			
STIRs	Converted to SOFR			
FRAs	Discontinued			
Swaptions	Non-linear effects			
Cash products				
Loans	Issue with loan supply?			
FRNs	Issue with lending supply?			

Effect of Swap Spreads

Swap spread = Swap rate - Treasury yield

Traditionally three components (e.g., Feldhütter and Lando, 2008)

- 1. Convenience premium of Treasuries More recently "inconvenience premium" (Klingler and Sundaresan, 2022)
- 2. Risk premium in Libor (not present in SOFR!)
- 3. Swap-specific (supply-demand) factor



Note: OIS based on effective fed funds rate ("old rate")

Sven Klingler

CIP Deviations

Covered interest rate parity:

EUBSC: 3m CIP deviation using Libor

EUXOQQC: 3m CIP deviation using ESTR and SOFR

Sven Klingler

Affected Instruments

Instruments	Impact
Derivatives markets	
Interest rate swaps	Swap spreads
Currency derivatives & swaps	CIP deviations
STIRs	Converted to SOFR
FRAs	Discontinued
Swaptions	Non-linear effects
Cash products	
Loans	Issue with loan supply?
FRNs	Issue with lending supply?

The "Libor Funeral"

July 2017: "The Future of Libor" (Bailey, 2017)

Libor publication not guaranteed after 2021

Central Questions:

- 1. What rates replace Libor?
 - Klingler and Syrstad (2021): Life after Libor
- 2. How does the Libor transition affect derivatives markets?
 - Work in progress: The Last Days of Libor
- 3. Does the Libor transition affect borrowing costs?
 - ► Klingler and Syrstad (2022): The SOFR Discount

Central Issue:

Disconnect Between Alternative Rates and Banks' Funding Costs

The invention of Libor in the 1970s (Vaughan and Finch, 2017):

Banks perform liquidity & maturity transformation

- Borrow short-term
- Give long-term loans and charge:

Fixed credit spread + variable interest rate

Variable interest rate should reflect banks' funding costs

Issue: SOFR does not reflect banks' funding costs

Central Issue:

Disconnect Between Alternative Rates and Banks' Funding Costs

- Jermann (2019): "Is SOFR Better than Libor?"
- Jermann (2021): Interest income during GFC
- Berndt, Duffie, and Zhu (2020): Construct a "credit add on" Great overview: "Pick a rate: Pitfalls and prizes in the post-Libor world" (Risk.net)
- Cooperman, Duffie, Luck, Wang, and Yang (2022): SOFR-benchmark poses issue for credit lines

Big question: Does benchmark rate affect borrowing costs?

Klingler and Syrstad (2022) study this question

Converting Libor FRN to SOFR FRN using swaps

	0	t_1	 t _N
Cashflow from investing in	Libor	FRN	
	-1	$YS^L + \ell_0$	 $1 + YS^L + \ell_{N-1}$
Pay fixed in SOFR swap			
Pay fixed rate S_0	0	$-S_0$	 $-S_0$
Receive average SOFR	0	\boldsymbol{j}_1	 3 _N
Receive fixed in Libor swa	p		
Receive fixed rate L_0	0	L ₀	 L ₀
Pay Libor	0	$-\ell_0$	 $-\ell_{N-1}$
Adjusted FRN cash flow	-1	$YS^L + (L_0 - S_0) + s_1$	 $1+YS^L+(L_0-S_0)+s_N$
Cashflow from investing in	SOFR	R FRN	
	$^{-1}$	$YS^S + s_1$	 $1 + YS^S + s_N$

Conclusion: $YS^{S} = YS^{L} + (L_{0} - S_{0})$

Adjustment procedure

To ensure exact cashflow matching, we proceed in three steps:

- 1. Determine payment schedule of FRN
- 2. Bootstrap Libor, Libor swap, and SOFR OIS
 - Forward rate for each FRN payment
 - Discount rate for each FRN payment (based on OIS)
- 3. Construct basis term:

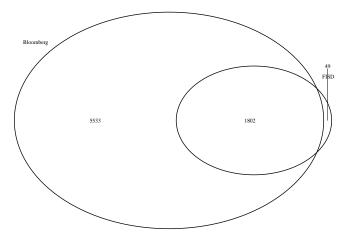
$$b(0, N) = \frac{\sum_{i=1}^{N} n_i d(0, t_i) \times (f_i^{Libor} - f_i^{SOFR})}{\sum_{i=1}^{N} n_i d(0, t_i)}$$

- *n_i* is daycount between payments
- f_i is short-hand for $f(0, t_{i-1}, t_i)$

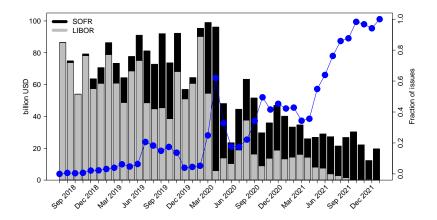
Subtract this basis from SOFR FRNs

FRN Data

Collect FRN data from Bloomberg's fixed income database


- Non-exotic FRNs that pay at maturity
- Benchmark rate: 1m Libor, 3m Libor, SOFR (daycount: ACT/360)
- Maturity between 6m and 11 years
- ► Focus on July 2018 to December 2021
- Only include issuers with at least one Libor and one SOFR issuance

Key variable: Yield spread (YS) at issuance


- ▶ YS for SOFR FRNs: Subtract maturity-matched Libor-SOFR spread
- ▶ YS for 1m FRNs: Subtract maturity-matched Libor tenor basis

Repeat collection in Mergent Fixed Income Securities Database (FISD)

FISD is Small Subsample

FRN Issuance Volumes

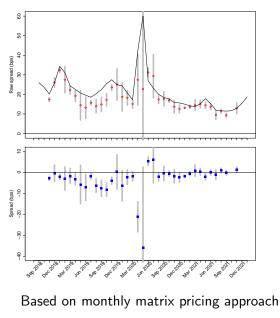
The SOFR Discount in FRNs

$$YS_{t,j}^{Adj} = \alpha_{SOFR} + \alpha_{1m} + \sum_{t \in YMs} \left(\beta_{a,t} \log(a)_{t,j} + \beta_{ttm,t} ttm_{t,j} + \beta_{ttm^2,t} ttm_{t,j}^2 + FE_i \times FE_t \right) + \varepsilon_{t,j}$$

	All			Bloomberg	FISD
	(1)	(2)	(3)	(4)	(5)
SOFR	-8.31^{***} (-5.32)	-6.23^{***} (-4.81)	-4.73^{***} (-3.42)	-4.57^{***} (-3.26)	-3.54^{**} (-2.29)
1 <i>m</i>	(-4.00^{***}) (-3.84)	(-1.42^{***}) (-4.63)	-0.71^{*} (-1.77)	-0.77^{*} (-1.81)	0.73** (2.20)
Add. contr.	ttm ttm ² log(a)	ttm ttm ² log(a)	$ttm \times ym$ $ttm^2 \times ym$ $\log(a) \times ym$	$ttm \times ym$ $ttm^2 \times ym$ $\log(a) \times ym$	$ttm \times ym$ $ttm^2 \times ym$ $\log(a) \times ym$
Rating \times YM FEs	√ 10g(a)	-	-		
Issuer \times YM FEs	-	\checkmark	\checkmark	\checkmark	\checkmark
Adj. R ²	0.80	0.93	0.95	0.95	0.95
Num. obs.	7,384	7, 384	7, 384	7, 335	1,851

Potential Explanations?

- ► Legal risk: Discount stronger for FRNs maturing after Libor cessation
- Novelty discount: Discount diminishes over time
- Safe asset discount: Discount stronger for safer issuers
- Investor attention: Discount less pronounced for yield-sensitive investors
- Alternative spread adjustments


Potential Explanations?

	(1)	(2)	(3)	(4)	(5)	(6)
SOFR	-4.23***	-4.43***	-2.97**	-4.58***	-4.79***	-3.55***
SOFR $ imes$ Mature Post	(-3.21) -5.21^{**} (-2.15)	(-3.15)	(-2.13)	(-2.96)	(-3.12)	(-4.12)
$SOFR imes 1_{t > Apr}$ 2020	、	2.09				
$\textit{SOFR} \times \mathbb{1}_{t \in [03/20,04/20]}$		(1.39) -21.36^{***} (-3.04)				
$\textit{SOFR} \times \mathbbm{1}_{\textit{US GSE}}$		(0.01)	-4.02^{**} (-2.50)			
$SOFR \times \mathbbm{1}_{MMF}$ inv.			()	-0.24 (-0.28)		
1 _{MMF} inv.			-0.40 (-1.13)	-0.33 (-0.87)		
D.1m	-0.67 (-1.61)	-0.92^{**} (-2.14)	-0.86** (-2.12)	-0.73^{*} (-1.81)	$^{-0.67*}_{(-1.73)}$	-0.85** (-2.03)
Adj. R ² Num. obs.	0.95 7, 384	0.95 7, 384	0.95 7, 384	0.95 7,384	0.94 7, 384	0.95 7, 384

Column (5): Use cubic spline interpolation (withou cf matching)

Column (6): Use futures instead of swaps up to 2y

The SOFR Discount Over Time

Loan Data

- ▶ Use the new version of LPC Dealscan (launched in August 2021)
- Focus on term loans and credit lines
- Exploit: Loan amendments

Key variables:

- Indicator: Amendment changes benchmark rate from Libor to SOFR
- All-in spread drawn (AISD)

Less obvious how to adjust this spread:

- Use raw AISD
- Subtract maturity-matched 1m Libor-SOFR spread

The SOFR Discount in Syndicated Loans

	Δ Adjus	ted AISD	Δ Raw AISD		
	(1)	(2)	(3)	(4)	
1(Benchmark Chg.)	-16.30***	-19.26***	-1.84	-4.71	
	(-5.40)	(-2.91)	(-0.61)	(-0.71)	
$\Delta \#Lenders$	0.39	-0.16	0.37	-0.19	
	(1.43)	(-0.36)	(1.36)	(-0.44)	
$\Delta \log(Amt)$	-2.76	0.52	-2.62	0.89	
- ()	(-0.96)	(0.07)	(-0.90)	(0.13)	
ΔTTM	-2.61^{***}	-2.05	-3.29***	-2.62	
	(-3.09)	(-1.13)	(-3.86)	(-1.43)	
$\Delta 1(Covenants)$	5.20	8.68	5.52	8.99	
	(1.36)	(0.99)	(1.47)	(1.04)	
Loan Type FE	Yes	-	Yes	_	
YM FE	Yes	Yes	Yes	Yes	
Age FE	Yes	Yes	Yes	Yes	
Tranche FE	-	Yes	-	Yes	
Adj. R ²	0.07	0.33	0.05	0.25	
Num. obs.	4,311	4,311	4,311	4,311	

Conclusion

Benchmark transition from Libor to alternative reference rates:

- Affects notional worth trillions of dollars (derivatives & debt)
- Poses several interesting questions for research

Three key take-aways:

- 1. Alternative rates (especially SOFR):
 - (a) Affected by micro-structure effects
 - (b) Not representative of banks' marginal funding costs
- 2. No evidence that borrowers pay a premium for SOFR borrowing
 - ► The SOFR discount
- 3. Transition did not go entirely smooth

Klingler gratefully acknowledges support from the European Research Council (ERC grant no. 101040188).

References I

- Bailey, A. (2017). The futures of Libor. Speech by the Chief of the Financial Conduct Authority.
- Berndt, A., D. Duffie, and Y. Zhu (2020). Across-the-curve credit spread indices. Working pape, Stanford University Graduate School of Business Research Paper.
- Cooperman, H., D. Duffie, S. Luck, Z. Wang, and D. Yang (2022). Bank funding risk, reference rates, and credit supply. Working paper, Stanford University.
- Feldhütter, P. and D. Lando (2008). Decomposing swap spreads. Journal of Financial Economics 88(2), 375-405.
- Jermann, U. (2019). Is SOFR better than LIBOR? Working paper, Wharton School of the University of Pennsylvania.
- Jermann, U. (2021). Interest Received by Banks during the Financial Crisis: LIBOR vs Hypothetical SOFR Loans. Working paper, Wharton School of the University of Pennsylvania.
- Klingler, S. and S. M. Sundaresan (2022). Diminishing treasury convenience premiums: Effects of dealers' excess demand in auctions. Columbia Business School, working paper.
- Klingler, S. and O. Syrstad (2021). Life after libor. *Journal of Financial Economics* 141(2), 783–801.
- Klingler, S. and O. Syrstad (2022). The sofr discount. Working Paper, BI Norwegian Business School.
- Schrimpf, A. and V. Sushko (2019). Beyond LIBOR: A primer on the new benchmark rates. Working paper, Bank for International Settlements.
- Vaughan, L. and G. Finch (2017). The fix: How bankers lied, cheated and colluded to rig the world's most important number. John Wiley & Sons.

Sven Klingler